skip to main content


Search for: All records

Creators/Authors contains: "Savagian, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Resource limitations, either due to environmental conditions or constraints on parental provisioning effort, can drive intense competition among offspring. In communal groups, resource availability may increase if parents receive assistance from other group members; however, if those caregivers also produce young, offspring demand may increase at the same time. It is possible, therefore, that the costs of intrabrood competition in large broods may outweigh the benefits of provisioning from additional caregivers. We tested the relationships between group size, brood size, and provisioning rates in the greater ani (Crotophaga major), a communally nesting cuckoo in which multiple breeding pairs and nonreproductive helpers cooperatively raise a shared brood. Crucially, brood and group size can vary independently in this species, allowing us to test changes in each variable separately. Using video footage of 2255 prey deliveries across 10 nests, we found that an increase in the number of adult caregivers within a group did not sufficiently offset a corresponding increase in the number of dependent young within a brood: prey availability per average nestling decreased with brood size, regardless of group size. In larger broods, last-hatched nestlings received significantly less prey than their broodmates, in part due to greater hatching asynchrony that exacerbated competitive asymmetries and facilitated inequality in food allocation. Our results indicate that last-hatched ani nestlings suffer a “double cost” in large broods: they must compete with more nestmates, and suffer disproportionately from asynchronous hatching. These costs may contribute to increased parent–offspring conflict and may constrain group size in communal breeders.

     
    more » « less
  2. Abstract

    Group living often requires maintaining dynamic and varied relationships with fellow group members, while simultaneously monitoring and interacting with external competitors. Group members in many social species vocalize together to produce duets or choruses—coordinated, often conspicuous vocal displays—that may play a role in these interactions. Compared with male–female duets, however, relatively little research exists on the function and adaptive significance of group choruses, which involve three or more individuals. Here we investigate chorusing behavior in the greater ani (Crotophaga major), a communally breeding cuckoo that nests in stable social groups of four to eight unrelated individuals. Groups may remain together for several years on the same nesting territory, and groups occasionally destroy each other's clutches in conflicts over high‐quality territories. We asked whether the raucous, highly stereotyped choruses performed by ani groups are primarily used for intra‐ or intergroup communication, and whether they contain information about the identity of the social group and the number of birds vocalizing. Behavioral observations and acoustic recordings from three breeding seasons revealed that choruses typically occurred during social interactions within the group (78% of choruses) or in response to a predator or extra‐group individual (17%) and only rarely in intergroup interactions (4%). Consistent with this finding, choruses did not reliably reflect the number of birds vocalizing, and we found only limited evidence for group‐specific acoustic signatures (driven by a single group whose choruses were highly distinct). These results suggest that group choruses play an important role in intra‐group signaling, potentially in contexts such as group formation, reinforcement of social bonds within the group, and/or collective decision‐making, and they motivate new research questions about the role of collective signaling in social evolution.

     
    more » « less
  3. African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages—declining wildlife populations and their displacement by livestock—may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana,Cynanchum viminale(Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana–tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.

     
    more » « less
  4. Abstract

    Conflicts between groups of animals have individual‐level fitness consequences that can influence the evolution of social behaviour. In the cooperatively breeding greater ani (Crotophaga major), groups occasionally destroy the eggs of their neighbours, causing the attacked group to abandon their nest. Prior research suggested that such conflicts occur when two groups build nests in close proximity, and that established groups tend to evict newcomers. However, inter‐group conflict had never been directly observed. Here, we report the first photographic evidence of egg destruction by greater anis. Twelve artificial nests containing clay eggs were placed in the field with the intent of attracting nest predators. Camera footage revealed that although only two nests were discovered by heterospecific predators (white‐faced capuchins,Cebus capucinus), five nests were visited by resident anis, who in three cases damaged the clay eggs by grasping them with their bills and ejecting them from the nest cup. Nests were discovered between 2 and 96 hr after being placed in the field (mean = 34 hr) and were visited up to 18 times by up to 4 individuals simultaneously. The distance between artificial nests and the nearest known ani territory ranged from 0.13 to 0.28 km (mean = 0.2 km). Resident groups did not subsequently breed at the nest sites that they attacked, consistent with the hypothesis that the main benefit of inter‐group conflict is to reduce competition for local resources rather than to usurp nest sites. This accidental experiment reveals that greater anis closely monitor nesting activity near their territories, which may contribute to the strong “home field advantage” that resident groups hold over intruders.

     
    more » « less